

A Pre-Combustion Carbon Capture System Applied to a Modern LNG Carrier

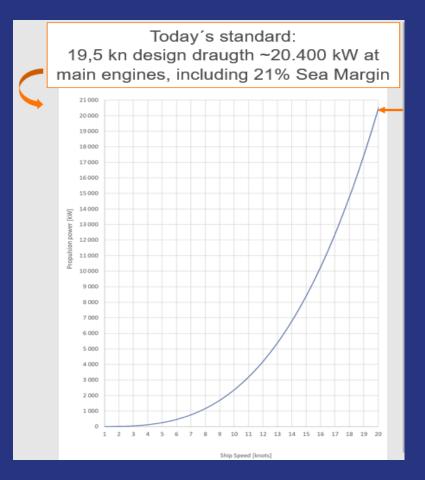
René Sejer Laursen Director Global Sustainability ABS

A Pre-Combustion Carbon Capture System Applied to a Modern LNG Carrier Co-Writers

Kaisa Nikulainen &
CEOJuha Laukka
Technical DirectorRotoboost

Kaj Portin

General Manager Sustainable Fuels & Decarbonizations Wärtsilä


Introduction

Goal: To investigate the pre-combustion carbon capture system from Rotoboost applied in a LNG carrier

Joint study between Rotoboost, Wärtsilä and ABS

Todays standard design:

- 174 000 m3 LNG Carrier
- Design speed 19. 5 knots
- GTT cargo containment system with a BOR of 0.08% per day
- Propulsion system 2 x 2-stroke LP DF engine MCR x RPM (2 x 10.2 MW @ 69)
- Gensets 4 x 4-stroke DF delivering ~ 3 MW each
- 2 x 6-stage Cryostar cryogenic gas compressors

Gastech

Hydrogen

Climatetech

Source: Wärtsilä

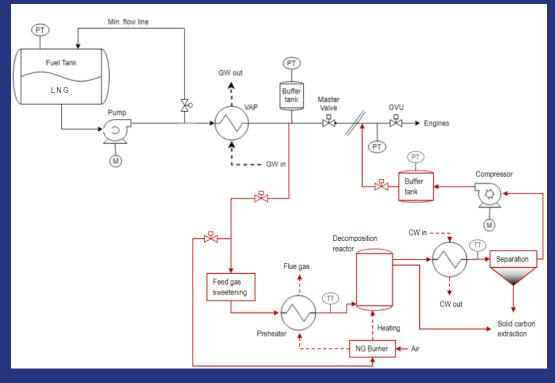
Rotoboost

Onboard LNG Decomposition

Principle of Operation

- Natural gas converted into H2 rich decomposition gas (89 mol % hydrogen & 11 mol % unreacted NG) onboard with solid carbon as a byproduct
- H2 used as add-in-fuel for engine together with natural gas
- Vessel continues to bunker only regular LNG fuel, but CO2 emissions are reduced significantly-> better Environmental Index Value, lowered well-to-wake emissions
- Produced solid carbon has sales value (~graphite) -> additional revenue

Compatible Fuels: LNG


Approval in Principle with ABS

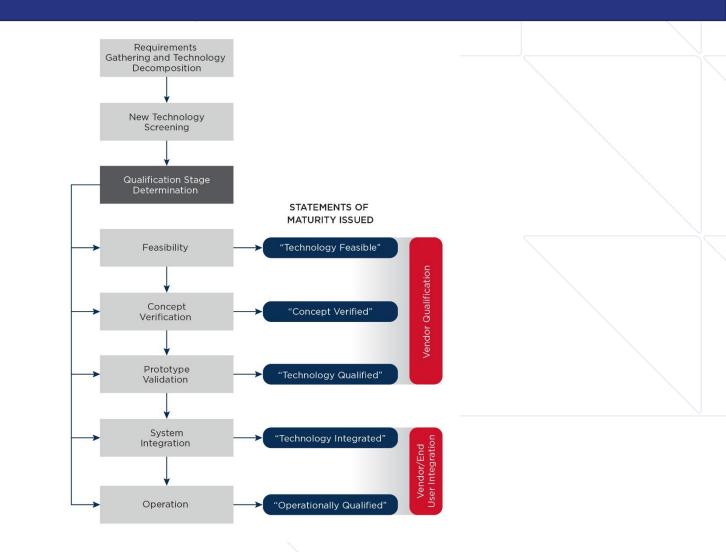
ROTO BOOST

Approval-in-Principle from ABS for applying 'hydrogen from natural gas' technology onboard marine vessels and utilizing produced H2 as carbon-free add-in-fuel.

Gastech

Hydrogen

N Climatetech


ABS Novel Concepts Review Process

ABS Supporting document:

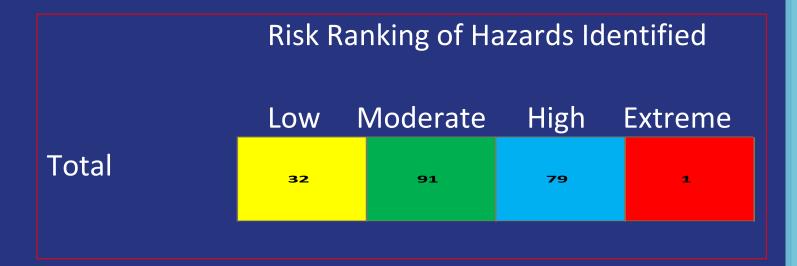
•ABS Guidance Notes on Review and Approval of Novel Concepts

- ABS Guidance Notes on Qualifying New Technologies
- ABS Guide for Vessels Intended to operate on hydrogen using ICE

• ABS Guide for Carbon Capture

Gastech Hydrogen Climatetech

Rotoboost - AIP issued 2022


Safety issues related to the use of Hydrogen:

- Material susceptibility for H2 embrittlement
- Potential for leak smallest atom size
- Wide flammability range: 4 75%
- Detonation, missile effect
- Gas dispersion, fire and explosion
- Clean burning, no flame visibility

• Stored energy in buffer volume (compressed hydrogen)

Other special safety focus points:

- Pressure relief system in the TDC reactor
- Fire protection
- Dirt in and composition of the NG

All recommendations has been resolved.

Gastech Hydrogen

Climatetech

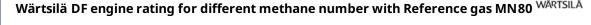
Wärtsilä - Hydrogen engine system

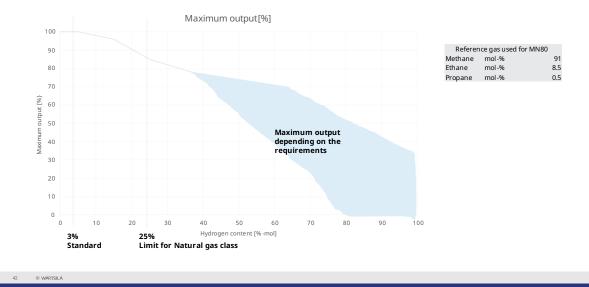
Today, no 2-stroke engine manufactures are available with hydrogen engine or a concept for burning hydrogen. But there are long term plans.

Gastech Hydrogen

Climatetech

Wärtsilä however have development work ongoing.


Engine performance comparison with 15%-vol hydrogen blending into natural gas compared to pure natural gas operation		
	Without combustion tuning	With combustion tuning
NOx	110%	as reference
Max cylinder pressures	20%	10%
Unburnt fuel	-15%	-15%
Combustion duration	-30%	-30%
Engine efficiency	+ 1%-unit	as reference

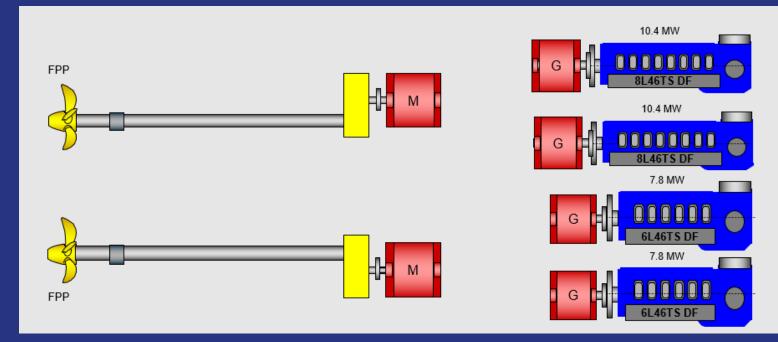

Conclusion from the blending in test

- Blending in hydrogen is improveing the heat release
- Temperature increases so NOx increases also With a better heat release
- Engine efficiency improves
- Methane slip reduces.

Wärtsilä Specification of the hydrogen engine

- Hydrogen < 3% vol
 - Standard LNG setup without modifications
- Hydrogen 3% vol 25% vol
 - Engine mechanical setup according to natural gas operation
 - Blending control needed and information about the ratio to be given to the engine control system.
 - Engine automation for combustion control
 - Maximum allowed output according to the methane number derating curve.
 - Hydrogen >25% vol
 - Engine setup according to hydrogen operation
 - Blending control needed and information about the ratio to be given to the engine control system.
 - Safety system setup according to hydrogen operation
 - Engine automation for combustion control
 - Maximum allowed output according to the methane number derating curve.

Gastech

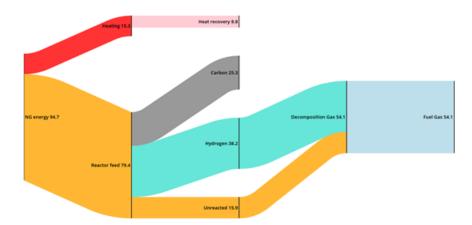

Hydrogen

Climatetech

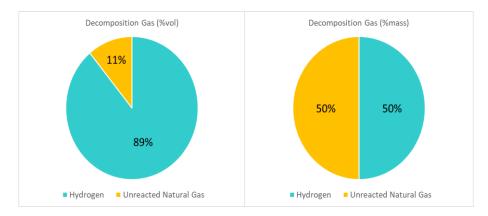
Source: Wärtsilä

Wärtsilä DFDE engine

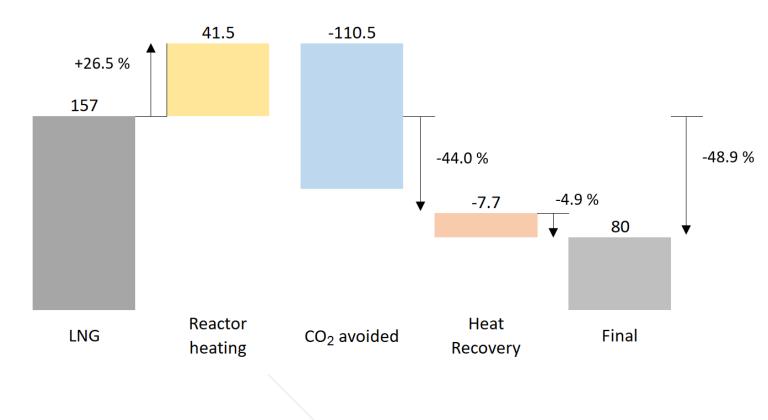
DFDE engine lay-out Proposal from Wärtsilä: 2 x 8L46TS DF 2 x 6L46TS DF Total installed power: 36.4 MW. 2 x FPP propellers 2 x electric motors.


Gastech | 🚯 Hydrogen |

Climatetech

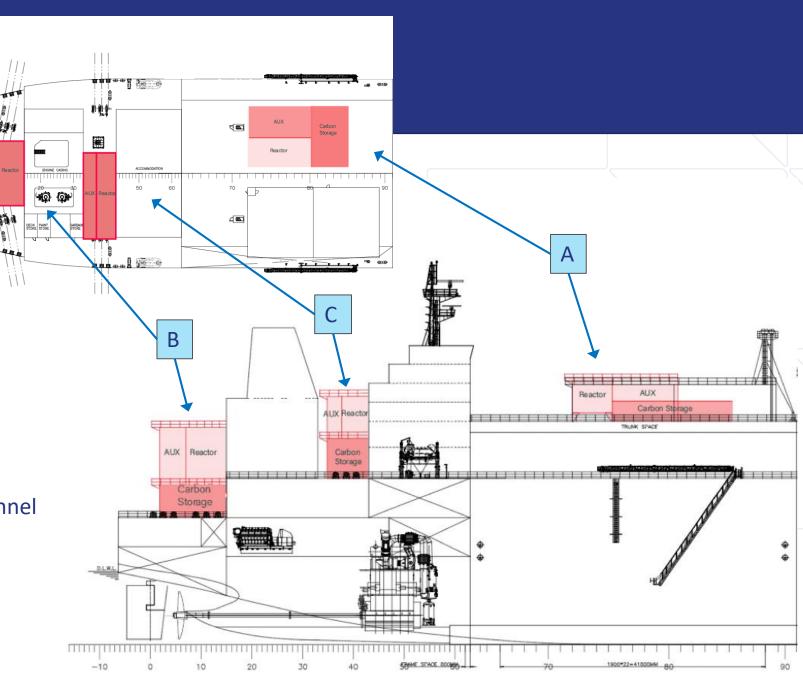

Source: Wärtsilä

Max power output 89/11 mol % blend gives a 45% reduction \rightarrow 16.4 MW output

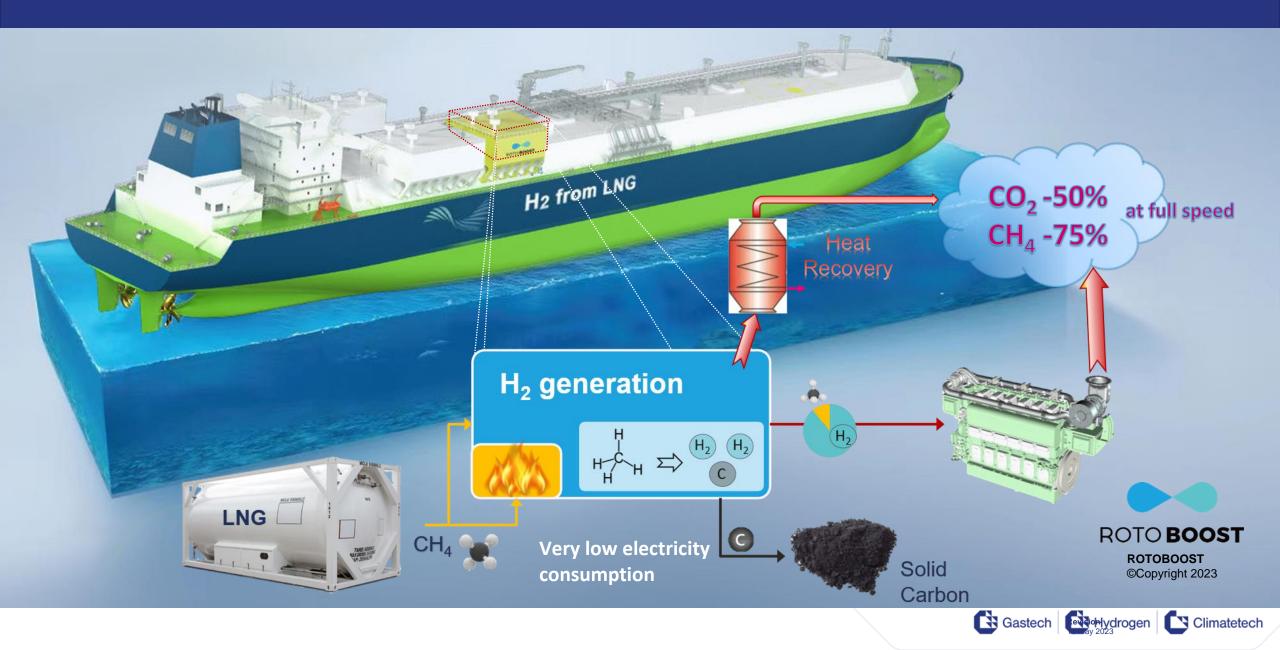

Results: Carbon capture rate, energy and mass balance

Decomposer energy balance diagram

LNG vs. decomposition gas use (tons CO₂/day)


Gastech Bydrogen Climatetech

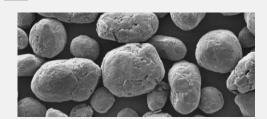
Decomposition gas composition


TDC & carbon storage equipment locations onboard LNG Carrier (3 alternatives)

- A. On deck (ideal for newbuild)
 More space available typically
 Closer to BOG systems
- B. Aft of vessel (ideal for retrofit)
 - Easier retrofit installation
 - □ Minimal influence into existing GA
- C. Front of/next to funnel *(alternative)*Short distance to both engine and funnel

30 day round-trip allow only single centralized carbon unloading location at gas loading terminal. Carbon storage tank can be placed below TDC reactor.

A Pre-Combustion Carbon Capture System Applied to a Modern LNG Carrier


Classification and application of carbon products

Carbon Black

- Enhances the wear resistance
- Increase the tensile strength
- Improve the aging resistance

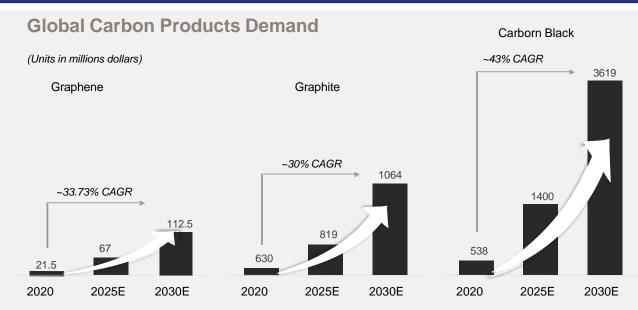
Pyrolytic Graphite

- Tap Density : \geq 1.05 (g/cm³)
- Specific surface area: $\leq 1.8 \text{ (m}^2/\text{g})$
- Capacity : \geq 425 (mAh/g)
- Density:1.75-1.8 (g/cm³)
- Charging Cycle : \geq 10000

Each TESLA Model 3 use : ≥ 85 (kg)

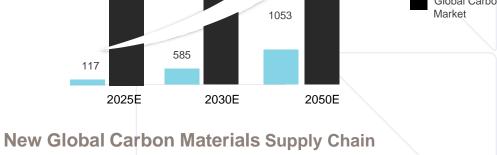
3 Carbon Nanotube

- Tensile strength of 50-200 GPa equivalent to 100 times that of steel, but with a weight of only 1/6 of steel
- Axial thermal conductivity of 2000-3000W/mK, about 10 times that of copper and 3 times that of diamond.
- Advanced Lightweight
 Composites
 for Aerospace Automotive and
 Satellites
- Transparent Conductive Films
- Nanoelectronics and Semiconductor Devices


4 Graphene

- Concrete and steel additives boosting x100 higher strength
- Graphene has a thermal conductivity of up to 5300 W/(m.K), 13 times that of copper
- Energy Storage-Supercapacitors and Batteries
- Nano-Electronics- Transistors, Flexible Displays and Integrated Circuits
- Coatings Ultra-High Barrier against corrosion, abrasion and UV rays

The market for solid carbon



Carbon Products Market Drivers

Global CO2 emission legislation continues to tighten

- Carbon downstream applications include automotive, chemical and semiconductor industries increasing rapidly every year
- Carbon materials are the back-bone of almost all decarbonzation efforts, such as batteries,fuel cell, solar panels,high performance steel, speciality paint, etc

LNG Carriers Contribution to Global Carbon Supply (Units in millons dollars) 2,286 4795.5 1053 LNG Carriers Sourced Carbon Global Carbon Market

Gastech Hydrogen Climatetech

- —a typical LNG carrier generates over 60 tons carbon materials daily.
- —Traditional LNG export countries have potential to become the new global carbon material hubs

Conclusion

TDC & DFDE using a hydrogen/NG fuel blend applied in LNG carrier

- > Blending in hydrogen improves the heat release and engine efficiency improves.
- > Methane slip reduces
- > Combustion temperature increases so NOx increases also, needs to be considered in the DFDE layout.
- In this study the 89/11 mol % blend was used in the L46TS, however the engine needs to be upgraded. No such plans are readily available, the market entry will be dependent on market request.
- DFDE system with an initial output of 36.4 MW seems possible in FO mode, even though output it reduced to 45% in fuel blend mode.
- > DFDE in LNG carrier is proven technology.
- Capture rate of 49% can be achieved with an 89/11 %mol blend.
- > 3 potential locations for the TDC and carbon storage tank are identified.
- > Shipyard and owners need to be involved to finalize system integration.
- Solid carbon goes into a circular economy.

Thank you

Questions?

Gastech 🚯 Hydrogen 🖸 Climatetech